From Paper to Program: Challenges of Implementing Permutation Tests

Kellie Ottoboni with Philip B. Stark

Department of Statistics, UC Berkeley Berkeley Institute for Data Science

> June 12, 2018 ISNPS, Salerno

Teaching Introductory Statistics

Important concepts

- Sampling distributions
- *p*-values
- Confidence intervals

Important concepts

- Sampling distributions
- *p*-values
- Confidence intervals

Barriers to learning

- Z tests, t tests
- Assumptions
- Formulas

What if we could teach the concepts without the particular details?

Tools:

Resampling methodsComputers

Data Science 8 UC Berkeley

Permutation tests clarify concepts.

- General: it's a procedure, not a formula
- Discrete: counting instead of integration
- Design-based: assumptions come from the data collection

Hesterberg (2015)

Python is gaining popularity for data analysis.

- General purpose language, "batteries included"
- Libraries for a variety of scientific applications

The book

A companion to Pesarin and Salmaso (2010)

- Target audience: late undergraduate to early PhD or domain researchers with some statistics background
- Conceptual: how to determine an appropriate permutation test
- Carefully consider experimental design and assumptions
- Introduce concepts about causal inference

• Components of a permutation test The null invariance and the test statistic

Prom experiments to observational studies Randomization, confounding, the "implied experiment"

Computation for permutation tests
Sampling algorithms and pseudorandom numbers

The book will be open-source online...

Type to search

Introduction

- 1. Components of a permutation test
 - 1.1 Canonical example: the two sa...
 - 1.2 Exchangeability under the null ...
 - 1.2.1 Mathematical preliminaries
 - 1.2.2 The null hypothesis
 - 1.2.3 Neyman-Rubin model
 - 1.3 Test statistics
 - 1.4 An example with data
 - 1.5 Exercises
- 2. From experiments to observational ...
 - 2.1 Randomized experiments
 - 2.1.1 Types of experiments
 - ----

Interact

A

Mathematical preliminaries

Before we talk about hypothesis tests, it's crucial to discuss m familiar with concepts from advanced undergraduate math cou

Sets¶

A set is a collection of objects, called members or elements of order. $a \in A$, pronounced "a is an element of A," "a is in A," of that a is an element of the set A. This is the same as writing A contains a." If a is not an element of A, we write $a \notin A$. Sets r listing their contents, or implicitly by specifying a property that a condition that they satisfy. The contents of sets are enclosed

with interactive Python code.

Choosing a test statistic

itract

Example: clinical trials

Clinical trial data

Randomized experiment to treat GERD

- 136 patients
- 8 sites
- 7 clinical endpoints, baseline X and follow-up Y measures

Did treatment A reduce symptoms compared to treatment B?

Ottoboni, Lewis, and Salmaso (2018)

The permutation test

Test the sharp null hypothesis that treatment has no effect:

 $H_0: Y_{ij}(A) = Y_{ij}(B), \forall individuals i and sites j$

Naive, but correct, statistic: difference in mean outcomes $\overline{Y(A)} - \overline{Y(B)}$

Controlling for covariates

• Difference scores:
$$\left(\overline{Y(A)} - \overline{X(A)}\right) - \left(\overline{Y(B)} - \overline{X(B)}\right)$$

• t statistic from a linear model

$$Y_{ij} = \alpha_j + \beta X_{ij} + \gamma Z_{ij} + \varepsilon_{ij}$$

- Two ways to find a permutation distribution:
 - Permute Z
 - Permute estimates $\hat{\varepsilon}$ from reduced model (*Freedman and Lane* (1983))

Randomized experiments

Example: student evaluations of teaching

Teaching evaluations

Are SET a valid measure of teaching effectiveness?

Data from MacNell et al. (2014)

- Students were randomized to 4 online sections of a course.
- In two sections, the instructors swapped identities.
- Was the instructor who identified as female rated lower on average?

Boring, Ottoboni, and Stark (2016)

Neyman-Rubin model, generalized

Rating $r_{ijk} = SET$ given by student i to instructor jwhen they appear to have gender k

If gender doesn't matter, $r_{ijmale} = r_{ijfemale}$.

Stratified two-sample test

- For each instructor, permute perceived gender assignments
- Use difference in mean ratings for female-identified minus male-identified

Results

In all categories, the male-identified instructor was rated higher.

Characteristic	M-F	perm P	t-test P
Overall	0.47	0.12	0.128
Caring	0.52	0.10	0.071
Consistent	0.47	0.21	0.045
Enthusiastic	0.57	0.06	0.112
Fair	0.76	0.01	0.188
Feedback	0.47	0.16	0.054
Helpful	0.46	0.17	0.049
Knowledgeable	0.35	0.29	0.038
Praise	0.67	0.01	0.153
Professional	0.61	0.07	0.124
Prompt	0.80	0.01	0.191
Respectful	0.61	0.06	0.124
Responsive	0.22	0.48	0.013

Pseudorandom number generators

What is a PRNG?

- A user-supplied seed value used to set the internal state
- A function that maps the **internal state to pseudorandom bits**
- A function that updates the internal state

Pigeonhole principle in action

Theorem (Too few pigeons)

If $\binom{n}{k}$ is greater than the size of a PRNG's state space, then the PRNG cannot possibly generate all samples of size k from a population of n.

PRNG	# Internal states	# Possibilities	Proportion of attainable possibilities
32-bit linear		Samples of 10	
congruential	4 billion	out of 50 items	0.4
generators		pprox 10 billion	
Marcanna		Permutations	
Twister	$\approx 2 \times 10^{6010}$	of 2084 items	0.0001
		$pprox 3 imes 10^{6013}$	

Cryptographically secure PRNGs

Hash functions take in a message x of arbitrary length and return a value h(x) of fixed size (e.g. 256 bits)

Cryptographic hash functions:

- computationally infeasible to invert
- difficult to find two inputs that map to the same output
- small input changes produce large, unpredictable changes to output
- resulting bits are uniformly distributed

- Teach the concepts of hypothesis testing using permutation tests
- Open-source online book with interactive Python examples
- Packages on GitHub: permute, cryptorandom, pscore_match